Constrained dynamic programming of mixed-integer linear problems by multi-parametric programming
نویسندگان
چکیده
This work addresses the topic of constrained dynamic programming for problems involving multi-stage mixed-integer linear formulations with a linear objective function. It is shown that such problems may be decomposed into a series of multi-parametric mixed-integer linear problems, of lower dimensionality, that are sequentially solved to obtain the globally optimal solution of the original problem. At each stage, the dynamic programming recursion is reformulated as a convex multi-parametric programming problem, therefore avoiding the need for global optimisation that usually arises in hard constrained problems. The proposed methodology is applied to a problem of mixed-integer linear nature that arises in the context of inventory scheduling. The example also highlights how the complexity of the original problem is reduced by using dynamic programming and multi-parametric programming. © 2014 Elsevier Ltd. All rights reserved.
منابع مشابه
Global optimization of mixed-integer polynomial programming problems: A new method based on Grobner Bases theory
Mixed-integer polynomial programming (MIPP) problems are one class of mixed-integer nonlinear programming (MINLP) problems where objective function and constraints are restricted to the polynomial functions. Although the MINLP problem is NP-hard, in special cases such as MIPP problems, an efficient algorithm can be extended to solve it. In this research, we propose an algorit...
متن کاملAn L1-norm method for generating all of efficient solutions of multi-objective integer linear programming problem
This paper extends the proposed method by Jahanshahloo et al. (2004) (a method for generating all the efficient solutions of a 0–1 multi-objective linear programming problem, Asia-Pacific Journal of Operational Research). This paper considers the recession direction for a multi-objective integer linear programming (MOILP) problem and presents necessary and sufficient conditions to have unbounde...
متن کاملA mixed integer linear programming formulation for a multi-stage, multi-Product, multi-vehicle aggregate production-distribution planning problem
In today’s competitive market place, companies seek an efficient structure of supply chain so as to provide customers with highest value and achieve competitive advantage. This requires a broader perspective than just the borders of an individual company during a supply chain. This paper investigates an aggregate production planning problem integrated with distribution issues in a supply chain ...
متن کاملRESOLUTION METHOD FOR MIXED INTEGER LINEAR MULTIPLICATIVE-LINEAR BILEVEL PROBLEMS BASED ON DECOMPOSITION TECHNIQUE
In this paper, we propose an algorithm base on decomposition technique for solvingthe mixed integer linear multiplicative-linear bilevel problems. In actuality, this al-gorithm is an application of the algorithm given by G. K. Saharidis et al for casethat the rst level objective function is linear multiplicative. We use properties ofquasi-concave of bilevel programming problems and decompose th...
متن کاملA Mixed Integer Linear Programming Model for the Design of Remanufacturing Closed–loop Supply Chain Network
Closed-loop supply chain network design is a critical issue due to its impact on both economic and environmental performances of the supply chain. In this paper, we address the problem of designing a multi-echelon, multi-product and capacitated closed-loop supply chain network. First, a mixed-integer linear programming formulation is developed to maximize the total profit. The main contribution...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Chemical Engineering
دوره 70 شماره
صفحات -
تاریخ انتشار 2014